The Bulletin of the Institute of Economics of the Russian Academy of Sciences № 5/2025. Economics and Management.
Vladimir L. Bersenev
Dr. Sci. (Hist.), Professor, Leading Researcher, Institute of Economics of the Urals Branch of the RAS, Yekaterinburg, Russia
ORCID: 0000-0002-3554-6965
Olga N. Buchinskaia
Cand. Sci. (Econ.), Senior Researcher, Institute of Economics of the Urals Branch of the RAS, Yekaterinburg, Russia
ORCID: 0000-0002- 5421-2522
ANALYSIS OF THREATS TO THE RESILIENCE OF THE RUSSIAN ECONOMY USING MACHINE LEARNING ALGORITHMS
121-145 |
577.92 KB |
The increasing number of exogenous and endogenous shocks faced by national economies, as well as various measures of external negative impact on the country’s economy, necessitate a diagnosis of threats to the viability of the economy. Based on the statistical data of the Russian Federation for the period 1990–2023, eight different types of shocks were identified, which were classified as external or internal, natural or artificial in origin. Some of these became bifurcation points, changing the vector of Russian economic development. Since the impact of artificially induced shocks cannot be analyzed through deterministic models, it becomes necessary to use current statistical data instead of analyzing long time series to diagnose threats to the resilience of the Russian economy. To this end, the authors used machine learning algorithms, including identifying specific machine learning algorithms that allow for a fairly accurate diagnosis of the impact of shocks on the resilience of our country’s economic system. The AdaBoost and decision tree algorithms demonstrated the best results. Machine learning was used to identify the variables the algorithms selected for shock impact diagnostics, as well as to determine the threshold values for the indicators used by the algorithms to diagnose economic shocks.
Keywords: economic shocks, economic crises, resilience, economic stability, economic diagnostics, machine learning.
JEL: E37
EDN: CBAPHB
DOI: https://doi.org/10.52180/2073-6487_2025_5_121_145
References
- Ricardo D. On the Principles of Political Economy and Taxation. Moscow: Eksmo, 2007. (In Russ.).
- Sey J.B. A treatise on political economy // Library of Economists. Issue VII. Moscow: Publishing house of K.T. Soldatenkov, 1896. Pp. 1–112. (In Russ.).
- Tugan-Baranovsky M.I. Selections. Periodic industrial crises. The history of the English crises. The General Theory of Crises, Moscow: Nauka, The Russian Political Encyclopedia (ROSSPAN), 1997. (In Russ.).
- Kondratiev N.D. Large cycles of the market: the report // N.D. Kondratiev. Problems of economic dynamics, Moscow: Ekonomika, 1989. Pp. 170–411. (In Russ.).
- Glazyev S.Y. Some patterns of technical and economic development and the possibility of accelerating scientific and technological progress. // Izvestia of the USSR Academy of Sciences: Economic Series. 1987. No. 3. Pp. 3–15. (In Russ.).
- Toynbee A. J. A Study of History. Moscow: Progress, 1996. (In Russ.).
- Senyavsky A.S. Big challenges in the imperial and soviet history of Russia: comparative analysis // Ural Historical Journal. 2018. No. 2. Pp. 39–48. (In Russ.). DOI: 10.30759/1728-9718-2018-2(59)-39-48. EDN: UQVEQA.
- Nefedov S.A. “Challenges” and “Responses” in the history of Russia (using the example of the pre-Petr and Petr reforms, 1615-1725) // Sociological Research. 2017. No. 9. Pp. 78–87. (In Russ.). DOI: 10.7868/S0132162517090094. EDN: ZFTRNP.
- Nefedov S.A. “Challenges” and “responses” of the 18th century Russia // Sociological research. 2018. No. 10. Pp. 130–139. (In Russ.) DOI: 10.31857/S013216250002165-4. EDN: YOUXVZ.
- Nefedov S.A. “Challenges” and “responses” in Russian history: the first half of the 19th century // Sociological research. 2019. No. 6. Pp. 86–96. (In Russ.). DOI: 10.31857/S013216250005484-5. EDN: KHTCVI.
- Giddens E. The Consequences of Modernity // Philosophy of history: An anthology. Moscow: Aspect Press, 1995. Pp. 340–347. (In Russ.).
- Ochkin R.O. Theoretical and methodological aspects of the study of external shocks as a determinant factor of national and state economic interests // Theoretical economics. 2018. No. 2 (44). Pp. 161–167. (In Russ.). EDN: YPTVML.
- Akberdina V.V. Factors of resistance in the Russian economy: a comparative analysis for the period 2000-2020 // National interests: priorities and security. 2021. Vol. 7. No. 8. Pp. 1412–1432. (In Russ.). DOI: 10.24891/ni.17.8.1412. EDN: UTWWQM.
- Fukuyama F. The end of history? // Philosophy of History: An Anthology. Moscow: Aspect Press, 1995. Pp. 200–310. (In Russ.).
- Chatterjee S. From cycles to shocks: Progress in business cycle theory // Business Review. 2000. Vol. 3. Pp. 27–37. https://core.ac.uk/download/pdf/6648921.pdf (accessed: 20.05.2025).
- Gallegati M. Irregular business cycles // Structural Change and Economic Dynamics. 1994. Vol. 5. No. 1. Pp. 73–79. DOI: 10.1016/S0954-349X(05)80020-7.
- Ng S. Modeling macroeconomic variations after COVID-19. National Bureau of Economic Research, 2021. No. w29060. https://www.nber.org/system/files/working_papers/w29060/w29060.pdf (accessed: 20.05.2025).
- Hurduzeu G., Lupu R., Lupu I., Filip R. I. Evolving Economic Relationships: A TVPVAR Analysis of Trade, World Uncertainty, and Stock Market Volatility in Europe // Economic Computation & Economic Cybernetics Studies & Research. 2024. Vol. 58. No. 4. Pp. 20–41. DOI: 10.24818/18423264/58.4.24.02.
- Chen K., Di Q., Chen X. The resilience of island economy in the face of adverse shocks and its influencing factors: A case study from county-level islands in China // Marine Policy. 2024. Vol. 165. Pp. 106178. DOI: 10.1016/j.marpol.2024.106178.
- Šťastná S., Ženka J., Krtička L. Regional economic resilience: insights from five crises // European Planning Studies. 2024. Vol. 32. No. 3. Pp. 506–533. DOI: 10.1080/09654313.2023.2267250.
- Nchofoung T. N., Ngouhouo I. Determinants of economic resilience response in sub-Saharan Africa to a common exogenous shock: roles of demographic differences, exchange rate regimes and institutional quality // Journal of Social and Economic Development. 2024. Vol. 26. No. 1. Pp. 186-213. DOI: 10.1007/s40847-023-00258-9.
- Chen P. Empirical and theoretical evidence of economic chaos // System Dynamics Review. 1988. Vol. 4. No. 1–2. Pp. 81–108. DOI: 10.1002/sdr.4260040106.
- Akhmet M., Akhmetova Z., Fen M. O. Chaos in economic models with exogenous shocks // Journal of Economic Behavior & Organization. 2014. Vol. 106. Pp. 95–108. DOI: 10.1016/j.jebo.2014.06.008.
- Alexeeva T. A., Kuznetsov N. V., Mokaev T. N. Study of irregular dynamics in an economic model: attractor localization and Lyapunov exponents // Chaos, Solitons & Fractals. 2021. Vol. 152. Pp. 111365. DOI: 10.1016/j.chaos.2021.111365. EDN: CYHAVX.
- Zhang W. B. Chaos, complexity, and nonlinear economic theory/ World Scientific, 2023.
- Orlando G., Sportelli M. On business cycles and growth // Nonlinearities in Economics: An Interdisciplinary Approach to Economic Dynamics, Growth and Cycles. 2021. Pp. 153–168.
- Farazmand M., Sapsis T. P. Extreme events: Mechanisms and prediction // Applied Mechanics Reviews. 2019. Vol. 71. No. 5. Pp. 050801. DOI: 10.1115/1.4042065.
- Chowdhury S.N., Ray A., Dana S.K., Ghosh D. Extreme events in dynamical systems and random walkers: A review // Physics Reports. 2022. Vol. 966. Pp. 1–52. DOI: 10.1016/j.physrep.2022.04.001.
- Ray R.K., Sumsuzoha M., Faisal M.H., Chowdhury S.S., Rahman Z., Hossain E., Rashid M.M., Hossain М., Rahman M.S. Harnessing Machine Learning and AI to Analyze the Impact of Digital Finance on Urban Economic Resilience in the USA // Journal of Ecohumanism. 2025. Vol. 4. No. 2. Pp. 1417–1442. DOI: 10.62754/joe.v4i2.6515.
- Wu Z. Evaluation of Provincial Economic Resilience in China Based on the TOPSISXGBoost-SHAP Model // Journal of Mathematics. 2023. Vol. 2023. No. 1. Pp. 6652800. DOI: 10.1155/2023/6652800.
- Villacis A. H., Badruddoza S., Mishra A. K. A machine learning-based exploration of resilience and food security // Applied Economic Perspectives and Policy. 2024. Vol. 46. No. 4. Pp. 1479–1505. DOI: 10.1002/aepp.13475.
- Ahmed M.K., Bhuiyan M.M. R., Saimon A.S. M., Hossain S., Hossain S., Manik M.M.T.G., Rozario E. Harnessing Big Data for Economic Resilience the Role of Data Science in Shaping US Economic Policies and Growth // Journal of Management. 2025. Vol. 2. Pp. 26–34. DOI: 10.53935/jomw.v2024i4.865.
- Danilov Yu.A., Pivovarov D.A., Davydov I.S. On the issue of anticipating global financial and economic crises // Finance: theory and practice. 2020. Vol. 24. No. 1. Pp. 87–104. (In Russ.). DOI: 10.26794/2587-5671-2020-24-1-87-104. EDN: YBOVDS.
- Freund Y., Schapire R., Abe N. A short introduction to boosting // Journal-Japanese Society For Artificial Intel-ligence. 1999. Vol. 14. No. 5 Pp. 771–780.
- Quinlan J. R. Induction of decision trees // Machine learning. 1986. Vol. 1. Pp. 81–106. DOI: 10.1007/BF00116251.
- Breiman L. Random forests // Machine learning. 2001. Vol. 45. Pp. 5–32. DOI: 10.1023/A:1010933404324.
- Hosmer Jr/D.W., Lemeshow S., Sturdivant R.X. Applied logistic regression. John Wiley & Sons, 2013. DOI: 10.1002/9781118548387.
- Demšar J., Curk T., Erjavec A., Gorup C., Hočevar T., Milutinovič V., Možina M., Matija Polajnar M., Toplak M., Starič A., Štajdohar M., Umek L., Žagar L., Žbontar J., Žitnik M., Zupan B. Orange: data mining toolbox in Python // The Journal of machine Learning research. 2013. Vol. 14. No. 1. Pp. 2349–2353.
- Senchagov V. K., Mityakov S.N. Using the index method to assess the level of economic security // Bulletin of Economic Security. 2011. No. 5. Pp. 41–50. (In Russ.). EDN: OGXLJL.
- Krivorotov V.V., Kalina A.V., Belik I.S. Threshold values of indicative indicators for diagnostics of economic security of the Russian Federation at the present stage // Bulletin of UrFU. Economics and Management series. 2019. Vol. 18. No. 6. Pp. 892–910. (In Russ.). DOI: 10.15826/vestnik.2019.18.6.043. EDN: JRQDEP.
- Dubinina Je.V., Zhilina E.V. Diagnostics of threats to the economic security of the Russian Federation // Actual problems of science and education in the context of modern challenges. 2023. Pp. 498–508. (In Russ.). DOI: 10.34755/IROK.2023.29.97.092. EDN: QNVSUR.
Manuscript submission date: 30.05.2025
Manuscript acceptance date: 13.10.2025
For citation:
Bersenev V.L., Buchinskaia O.N. Analysis of threats to the resilience of the Russian economy using machine learning algorithms // Vestnik Instituta Ekonomiki Rossiyskoy Akademii Nauk. 2025. № 5. Pp. 121-145. (In Russ.). https://doi.org/10.52180/2073-6487_2025_5_121_145 EDN: CBAPHB



121-145
577.92 KB


