The Bulletin of the Institute of Economics of the Russian Academy of Sciences № 6/2025. Finance.

 

Boris D. Klyukin

Postgraduate Student at Lomonosov Moscow State; Chief Analyst, Industrial Development Fund (Federal State Autonomous Institution “Russian Fund for Technological Development”), Moscow, Russia

ORCID: 0009-0000-8038-6035

 

CLUSTER ANALYSIS OF FINANCIAL SYSTEM INDICATORS TO DETERMINE THRESHOLD VALUES OF THEIR CONTRIBUTION TO ECONOMIC GROWTH

Размер файла192-215
Размер файла  1.33 MB Размер файла Full text

The paper estimates the impact and threshold values of financial system indicators on the economic growth rates in 34 countries. Bisecting K-Means allows for making reasonable assumptions about their optimal combinations and levels. The cluster analysis identified seven latent groups, each differing in their financial system indicators. Calculating the weighted average growth rate for each group allowed for a comprehensive analysis of the relationship between financial factors and economic growth. An analysis of stock market turnover revealed that its growth is associated with accelerated economic growth, although the direction of this influence remains to be determined. The author also managed to roughly determine the lower limit of the turnover indicator (~30%), below which there is no positive impact on the economy. An analysis of the relative size of domestic loans to the private sector found arguments in favor of the existence of an optimal range of bank loans (75–125% of GDP) and thus a threshold, which is consistent with the findings of other authors. The analysis also suggested the existence of a lower limit on loan volume at 25%. The results of the study can be used in developing and substantiating target indicators for national economic policy.

Keywords: cluster analysis, stock market turnover, relative credit size, threshold values, economic growth.

JEL: F63, O57, P52

EDN: GPARPU

DOI: https://doi.org/10.52180/2073-6487_2025_6_192_215

References

  1. Schumpeter J.A. The Theory of Economic Development: An inquiry into Profit, Capital, Credit, Interest and the Business Cycle. Cambridge, MA: Harvard University Press, 1934. https://cruel.org/books/hy/shortschumpeter/SchumpeterTheoryofEconDev.pdf
  2. Goldsmith R.W. Financial structure and development. New York, Y.: Woodhaven Press Corp., 1959. https://www.nber.org/books-and-chapters/comparative-studyeconomic-growth-and-structure
  3. Mckinnon R.T. Money and capital for economic development. Washington, C.: Brookings Institution, 1973. https://archive.org/details/moneycapitalinec00rona/page/n11/mode/2up
  4. Shaw E.S. Financial deepening of economic development, New York: Oxford University Press, 1973. https://archive.org/details/financialdeepeni0000shaw_l8k4
  5. Luintel K.B., Li G., Khan M. The Threshold Effect of Finance on Growth: Reassessing the Burden of Evidence // Open Economies Review. 2024. Vol. 35. Pp. 887–953. DOI: 10.1007/s11079-024-09757-6.
  6. Grekov I.E. On improving approaches to determining the monetization of the economy and substantiating its optimal level // Finance and Credit. 2007. Vol. 11. No. 251. Pp. 60–70. (In Russ.). https://cyberleninka.ru/article/n/osovershenstvovanii-podhodov-k-opredeleniyu-monetizatsii-ekonomiki-i-obosnovanieee-optimalnogo-urovnya
  7. Grekov I.E. Level of financial development and rates of economic growth // Finance and Credit. 2013. No. 3 (531). Pp. 2–9. (In Russ.). https://cyberleninka.ru/article/n/uroven-finansovogo-razvitiya-i-tempyekonomicheskogo-rosta
  8. Cheremisinova D.V. Monetization of the economy as a driver of economic growth // Economics. 2015. Vol. 6. No. 7. Pp. 33–38. (In Russ.). https://cyberleninka.ru/article/n/monetizatsiya-ekonomiki-kak-drayver-ekonomicheskogo-rosta
  9. Cecchetti S.G., Kharroubi E. Reassessing the Impact of Finance on Growth // BIS Working Papers. 2012. No. 381. https://www.bis.org/publ/work381.pdf
  10. Law S. H., Singh N. Does too much finance harm economic growth? // Journal of Banking and Finance. 2014. Vol. 41. Pp. 36–44. DOI: 10.1016/j.jbankfin.2013.12.020.
  11. Arcand J.L., Berkes E., Panizza U. Too much finance? // Journal of Economic Growth. 2015. Vol. 20. No. 2. Pp. 105–148. DOI: 10.1007/s10887-015-9115-2.
  12. Sahay R., et al. Rethinking Financial Deepening: Stability and Growth in Emerging Markets // IMF staff Discussion Note. 2015. Vol. 2015. No. 08. https://www.imf.org/external/pubs/ft/sdn/2015/sdn1508.pdf
  13. Bank of Russia. The Impact of Financial Sector Development on Economic Growth and its Volatility // Analytical Note. 2017. No. 8. (In Russ.). https://www.cbr.ru/Content/Document/File/16747/03.pdf
  14. Lay S. H. Bank credit and economic growth: Short-run evidence from a dynamic threshold panel model // Economics Letters. 2020. Vol. 192. DOI: 10.1016/j.econlet.2020.109231.
  15. Gründler K. The vanishing effects of finance on economic development // Macroeconomic Dynamics. 2021. Vol. 25. No. 2. Pp. 536–578. DOI: 10.1017/S1365100519000312.
  16. Ho S.H., Saadaoui J. Bank credit and economic growth: A dynamic threshold panel model for ASEAN countries // International Economics. 2022. Vol. 170. Pp. 115-128. DOI: 10.1016/j.inteco.2022.03.001.
  17. Klyukin B.D. The impact of financial system indicators on economic growth in China, India and a number of other countries // Economics and Management. 2025. Vol. 31. No. 3. Pp. 372–384. (In Russ.). DOI: 10.35854/1998-1627-2025-3-372-384.
  18. Cline W. R. Too much finance, or statistical illusion? // Peterson Institute for International Economics. 2015. Vol. 15. No. 9. https://www.piie.com/sites/default/files/publications/pb/pb15-9.pdf
  19. Cline W.R. Further statistical debate on ‘Too Much Finance’ // Peterson Institute for International Economics. 2015. Vol. 15. No. 16. https://www.piie.com/sites/default/files/publications/wp/wp15-16.pdf
  20. Shevchenko L.M. Classification of national financial systems // Industry: economics, management, technology. 2013. No. 3. Pp. 108–111. (In Russ.). https://cyberleninka.ru/article/n/klassifikatsiya-natsionalnyh-finansovyh-sistem
  21. Boubakari A., Jin D. The Role of Stock Market Development in Economic Growth: Evidence from Some Euronext Countries // International Journal of Financial Research. 2010. Vol. 1. No. 1. Pp. 14–20. DOI: 10.5430/ijfr.v1n1p14.
  22. Ngare E., Nyamongo М., Misati R. Stock market development and economic growth in Africa // Journal of Economics and Business. 2014. Vol. 74. Pp. 24–39. DOI: 10.1016/j.jeconbus.2014.03.002.
  23. Zhou M., Shang Y. An Empirical Analysis of the Relationship Between China’s Economic Growth and the Stock Market // Advances in Economics, Business and Management Research. 2018. Vol. 70. Pp. 218–221. DOI: 10.2991/icoeme-18.2018.44.
  24. Srinivasan P., Karthigai P. Stock Market Development and Economic Growth in India: An Empirical Analysis // International Journal of Finance & Banking Studies. 2014. Vol. 5. No. 3. Pp. 361–375. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2556144
  25. Beck T., Levine R. Stock markets, banks, and growth: Panel evidence // Journal of Banking & Finance. 2004. Vol. 28. No. 3. Pp. 423–442. DOI: 10.1016/S0378-4266(02)00408-9.

Manuscript submission date: 29.05.2025

Manuscript acceptance date: 18.11.2025

 

For citation:

Klyukin B.D. Cluster analysis of financial system indicators to determine threshold values of their contribution to economic growth // Vestnik Instituta Ekonomiki Rossiyskoy Akademii Nauk. 2025. № 6. Pp. 192-215. (In Russ.). https://doi.org/10.52180/2073-6487_2025_6_192_215 EDN: GPARPU

  Creative Commons 4.0

The Bulletin of the Institute of Economics of the Russian Academy of Sciences № 6/2025. Finance.

 

Alexander E. Segal

Head of Corporate Finance Practice in Equity Capital Markets, PJSC Sberbank, Moscow, Russia

ORCID: 009-0004-1534-9376

 

Anton V. Malkov

Cand. Sci. (Econ.), Managing Director for Capital Markets, JSC T-Bank, Moscow, Russia

 

Andrey V. Osadchev

Manager of the Capital Markets Department, JSC T-Bank, Moscow, Russia

 

THE ANALYSIS OF THE RELATIONSHIP BETWEEN RETAIL INVESTOR SENTIMENT AND INITIAL IPO RETURNS IN RUSSIA’S “NEW REALITY” (SINCE 2022)

Размер файла170-191
Размер файла  579.17 KB Размер файла Full text

Against the backdrop of the transformation of the Russian stock market after 2022, the relevance of studying the factors influencing the pricing of shares during their initial public offerings (IPOs) has increased. This article presents the results of the first stage of the re- search – an analysis of the relationships between the initial returns of IPOs on the Russian stock market during the period 2022–2024 and retail market sentiment, retail demand in monetary terms and the number of investors. The correlation analysis revealed a statistically significant positive relationship between the level of sentiment and first-day returns, while retail demand in monetary terms and the number of investors showed no significant relationship with IPO returns. The study also identified a persistent behavioral pattern: retail investors act as net buyers (their total purchases exceed their total sales) on the first trading day. The findings open up prospects for further modeling of causal relationships between sentiment, retail demand, the number of investors and initial IPO returns on ex- tended datasets.

Keywords: IPO, underpricing, sentiment, retail investors, retail demand, behavioral finance, Russian stock market, investor behavior.

JEL: G14, G11, G32

EDN: IKYUDG

DOI: https://doi.org/10.52180/2073-6487_2025_6_170_191

References

  1. Beatty R.P., Ritter J.R. Investment Banking, Reputation, and Underpricing of Initial Public Offerings // Journal of Financial Economics. 1986. Vol. 15. Pp. 213–232.
  2. Chung C. Y., Kim J., Park J. Individual Investor Sentiment and IPO Stock Returns: Evidence from the Korean Stock Market // Asia-Pacific Journal of Financial Studies. 2017. Vol. 46 (6). Pp. 876–902. DOI: 10.1111/ajfs.12199.
  3. Beatty R.P., Welch Issuer Expenses and Legal Liability in Initial Public Offerings // Journal of Law and Economics. 1996. Vol. 39. P. 545.
  4. Fama E.F., French K.R. Permanent and Temporary Components of Stock Prices // Journal of Political Economy. 1988. Vol. 96 (2). Pp. 246–273.
  5. Poterba J.M., Summers L.H. Mean Reversion in Stock Prices: Evidence and Implications // Journal of Financial Economics. 1988. Vol. 22 (1). Pp. 27–59.
  6. Shiller R.J. Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends? // American Economic Review. 1981. Vol. 71 (3). Pp. 421–436.
  7. CampbellY., Shiller R.J. The Dividend–Price Ratio and Expectations of Future Dividends and Discount Factors // Review of Financial Studies. 1988. Vol. 1 (3). Pp. 195–228.
  8. Fama E.F., French K.R. Business Conditions and Expected Returns on Stocks and Bonds // Journal of Financial Economics. 1989. Vol. 25 (1). Pp. 23–49.
  9. Brown G.W., Cliff M.T. Investor sentiment and the near-term stock market // Journal of Empirical Finance. 2004. Vol. 11 (1). Pp. 1–27. DOI: 10.1016/j.jempfin.2004.04.001.
  10. Cook D. O., Kieschnick R., Van Ness A. On the Marketing of IPOs // Journal of Financial Economics. 2006. Vol. 82 (1). Pp. 35-61.
  11. Dorn D. Does Sentiment Drive the Retail Demand for IPOs? // Journal of Financial and Quantitative Analysis. 2009. Vol. 44 (1). Pp. 85–108.
  12. Song S., Tan J., Yi Y. IPO initial returns in China: Underpricing or overvaluation // China Journal of Accounting Research. 2014. Vol. 7 (1). Pp. 31–49. DOI: 10.1016/j.cjar.2013.12.001.
  13. Ljungqvist A., Nanda V., Singh R. Hot Markets, Investor Sentiment, and IPO Pricing // Journal of Business. 2006. Vol. 79 (4). Pp. 1667–1702.
  14. Derrien F. IPO Pricing in “Hot” Market Conditions: Who Leaves Money on the Table? // Journal of Finance. 2005. Vol. 60 (1). Pp. 487–521.
  15. Sha N., Ismail M.Y. Behavioral Investor Types and Financial Market Players in Oman // Journal of Asian Finance, Economics and Business. 2021. Vol. 8 (1). 285–294. DOI: 10.13106/jafeb.2021.vol8.no1.285.
  16. Baker M., Wurgler J. Investor sentiment in the stock market // Journal of Economic Perspectives. 2007. Vol. 21 (2). Pp. 129–152. DOI: 10.1257/jep.21.2.129.
  17. Anusakumar S.V., Ali R., Wooi H.C. The Effect Of Investor Sentiment On Stock Returns: Insight From Emerging Asian Markets // Asian Academy of Management Journal of Accounting & Finance. 2017. 13 (1). Pp. 159–178. DOI: 10.2139/ssrn.2209026.
  18. McCabe C. It Isn’t Just AMC. Retail Traders Increase Pull on the Stock Market. https://www.wsj.com/articles/it-isnt-just-amc-retail-traders-increase-pull-on-the-stockmarket-11624008602 (accessed: 13.11.2025).
  19. Fischer B. Noise // The Journal of Finance. 1986. Vol. 41. Pp. 529–543.
  20. Shleifer A., Summers L.H. The Noise Trader Approach to Finance // Journal of Economic Perspectives. 1990. Vol. 4 (2). Pp. 19–33.
  21. Barrot J.-N., Kaniel R., Sraer D. Are retail traders compensated for providing liquidity? // Journal of Financial Economics. 2016. Vol. 120. Pp. 146–168.
  22. Kaniel R., Liu S.M., Saar G., Titman Sh. Individual investor trading and return patterns around earnings announcements // Journal of Finance. 2012. Vol. 67. Pp. 637–680.
  23. Kelley E.K., Tetlock P.C. How wise are crowds? Insights from retail orders and stock returns // The Journal of Finance. 2013. Vol. 68. Pp. 1229–1265.
  24. Barber B.M., Odean T., Zhu N. Do retail trades move markets? // The Review of Financial Studies. 2009. Vol. 22 (1). Pp. 151–186.
  25. Kaniel R., Saar G., Titman Sh. Individual investor trading and stock returns // The Journal of Finance. 2008. Vol. 63. Pp. 273–310.
  26. Barber B.M., Odean T. All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors // Review of Financial Studies. 2008. Vol. 21 (2). Pp. 785–818.
  27. Cornelli F., Goldreich D., Ljungqvist A. Investor Sentiment and Pre-IPO Markets // Journal of Finance. 2006. Vol. 61 (3). Pp. 1187–1216.
  28. Clarke J., et al. Sentiment traders IPO initial returns: The Indian evidence // Journal of Corporate Finance. 2016. Vol. 37. Pp. 24–37.
  29. Bajo E., Raimondo C. Media sentiment and IPO underpricing // Journal of Corporate Finance. 2017. 46. Pp. 139–153.
  30. Green T.C., Hwang B.-H. IPOs as lotteries: Skewness preference and first-day returns // Management Science. 2012. Vol. 58 (2). Pp. 432–444.
  31. Da Z., Engelberg J., Gao P. In search of attention // The Journal of Finance. 2011. Vol. 66 (5). Pp. 1461–1499. DOI: 10.1111/j.1540-6261.2011.01679.x.
  32. Lim K.J.S., Stridsberg D. Feeling the Market’s Pulse with Google Trends // International Federation of Technical Analysts’ Journal. 2015. https://ssrn.com/abstract=2502508
  33. Loughran T., McDonald B. When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks” // The Journal of Finance. 2011. Vol. 66 (1). Pp. 35–65.
  34. Fuertes A.-M., Coakley J., Shen Z. IPO demand and media tone: Institutional versus retail investors. 2024. https://ssrn.com/abstract=3971260 or DOI: 10.2139/ssrn.3971260.
  35. Tversky A., Kahneman D. Advances in prospect theory: Cumulative representation of uncertainty // Journal of Risk and Uncertainty. 1992. Vol. 5. Pp. 297–323.
  36. Ye P. Does the disposition effect matter in corporate takeovers? Evidence from institutional investors of target companies // Journal of Financial and Quantitative Analysis. 2014. Vol. 49. Pp. 221–248.
  37. Andreu L., Ortiz C., Sarto J.L. Disposition effect in fund managers. Fund and stockspecific factors and the upshot for investors // Journal of Economic Behaviour and Organization. 2020. Vol. 176. Pp. 253–268.
  38. Edelen R.M., Ince O.S., Kadlec G.B. Institutional investors and stock return anomalies // Journal of Financial Economics. 2016. Vol. 119. Pp. 472–488.
  39. Wang Z., Duxbury D. Institutional investor sentiment and the mean-variance relationship: Global evidence // Journal of Economic Behaviour and Organization. 2021. Vol. 191. Pp. 415–441.
  40. Segal A.E. Features of the IPO market in Russia in the “new reality” (from 2022) // Research of the Faculty of Economics. Electronic journal. 2025. Vol. 17 (1). Pp. 39–59. (In Russ.).
  41. Eaton G.W., Green T.C., Roseman B.S., Wu Y. Retail trader sophistication and stock market quality: Evidence from brokerage outages // Journal of Financial Economics. 2022. Vol. 146 (2). Pp. 502–528. DOI: 10.1016/j.jfineco.2022.09.003.
  42. Malkov A. Capital Markets. Reload. M.: Alpina PRO. 2025. (In Russ.).
  43. Malkov A. IPO and SPO Pricing: Transition from the Old Market to the New. M.: Alpina PRO. 2024. (In Russ.).
  44. Malkov A. IPO and SPO. Structuring and pricing. М.: Mann, Ivanov and Ferber. 2021. (In Russ.).
  45. Che-Yahya N., Matsuura Y. Does individual investors’ sentiment explain Japanese IPO aftermarket performance? // Journal of Asian Finance, Economics and Business. 2021. Vol. 8 (4). Pp. 1079–1089. DOI: 10.13106/jafeb.2021.vol8.no4.1079.
  46. Kao L., Chen A., Lu C.-S. Retail Investor Attention and IPO Prices with a Pre-IPO Market // International Review of Economics & Finance. 2022. Vol. 82. Pp. 416–432.
  47. Jing R., Zhu H. Are Retail Investors Liquidity Providers? Evidence from the STAR and ChiNext Markets in China // Pacific-Basin Finance Journal. 2024. Vol. 83.

Manuscript submission date: 17.07.2025

Manuscript acceptance date: 18.11.2025

 

For citation:

Segal A.E., Malkov A.V., Osadchev A.V. The Analysis of the relationship between retail investor sentiment and initial IPO returns in Russia’s “new reality” (since 2022) // Vestnik Instituta Ekonomiki Rossiyskoy Akademii Nauk. 2025. № 6. Pp. 170-191. (In Russ.). https://doi.org/10.52180/2073-6487_2025_6_170_191 EDN: IKYUDG

  Creative Commons 4.0

The Bulletin of the Institute of Economics of the Russian Academy of Sciences № 5/2025. Finance.

Nikolai G. Sinyavsky

Dr. Sci. (Econ.), Associate Professor, Leading Researcher, Institute of Economic Policy and Economic Security Problems, Faculty of Economics and Business, Financial University under the Government of the Russian Federation, Moscow, Russia

ORCID: 0000-0003-1034-6489

 

SYSTEMIC RISK FACTORS IN THE IMPLEMENTATION OF DIGITAL TECHNOLOGIES TO ANTI-MONEY LAUNDERING: IDENTIFICATION, RANKING AND REGULATORY MEASURES

Размер файла167-187  Размер файла  335.54 KB Размер файла Full text

Digital products have the potential to make anti-money laundering and counter-terrorist financing operations less costly, more efficient and significantly faster, ensure high-quality compliance with the Financial Action Task Force Standards and improve cross-border cooperation. This enables financial institutions to provide services to a greater number of economic entities. Therefore, the global anti-money laundering system is widely introducing innovative digital technologies to provide prompt and reliable information about economic entities and their operations by significantly increasing the volume of processed data. However, their use is associated with regulatory or operational systemic risks. The purpose of the study is to identify risk factors and measures to regulate them for systemic risks, as well as to systematize and rank them by importance. Such ordering provides grounds for the appropriate distribution of resources used to influence risk factors. The level of risks, risk factors and measures for their regulation are assessed on the basis of a risk-oriented approach using surveys of authoritative organizations, research by specialists and regulatory documents.

Keywords: anti-money laundering, Financial Action Task Force on Money Laundering (FATF), digitalization, risks.

JEL: O33, O38, L73

EDN: LTKMAC

DOI: https://doi.org/10.52180/2073-6487_2025_5_167_187

References

  1. Kozyrev A.N. The Data Economy and the Digital Economy // Digital Economy. 2024. Vol. 2. No. 28. Pp. 5–14. (In Russ.). DOI: 10.33276/DE-2024-02-01. EDN: BFNYBQ.
  2. Tapscott D. The Digital Economy: Promise and Peril In The Age of Networked Intelligence: Monograph. New York, McGrawHill, 1995.
  3. Tapscott D. The Digital Economy Anniversary Edition: Rethinking Promise and Peril In the Age of Networked Intelligence: Monograph. New York, McGraw-Hill, 2014.
  4. Coase R. The Nature of the Firm // Econometrica. 1937. Vol. 4. No. 16. Pp. 386–405. DOI: 10.1111/j.1468-0335.1937.tb00002.x.
  5. Tapscott D., Agnew D. Governance in the Digital Economy // Finance & Development. 1999. December. Pp. 34–37. https://www.imf.org/external/pubs/ft/fandd/1999/12/pdf/tapscott.pdf (accessed: 31.08.2025).
  6. Abasov I.R., Galimkhanov A.B., Yusupov R.G. On the monitoring and supervision of the state authorities of the Russian Federation in the field of education in the context of the digital technologies development // The Rule-of-Law State: Theory and Practice. 2023. No. 4. Pp. 62–70. (In Russ.). DOI: 10.33184/pravgos-2023.4.7. EDN: SZURHB.

Manuscript submission date: 19.05.2025

Manuscript acceptance date: 13.10.2025

 

For citation:

Sinyavsky N.G. Systemic risk factors in the implementation of digital technologies to anti-money laundering: identification, ranking and regulatory measures // Vestnik Instituta Ekonomiki Rossiyskoy Akademii Nauk. 2025. № 5. Pp. 167-187. (In Russ.). https://doi.org/10.52180/2073-6487_2025_5_167_187 EDN: LTKMAC

  Creative Commons 4.0

The Bulletin of the Institute of Economics of the Russian Academy of Sciences № 6/2025. Finance.

 

Dmitry A. Kochergin

Dr. Sci. (Econ.), Assistant Professor, Chief Researcher, Institute of Economics of the RAS, Moscow, Russia

ORCID 0000-0002-7046-1967

 

MAIN TRENDS IN THE USE OF ARTIFICIAL INTELLIGENCE IN THE FINANCIAL SECTOR

Размер файла147-169 Размер файла  482.01 KB Размер файла Full text

This article is devoted to researching the current applications of artificial intelligence in the financial sector. The study examines the basic concepts and elements of artificial intelligence technology, identifies the main areas of its application in the financial sector, and reveals new opportunities and risks associated with the introduction of artificial intelligence. The study found that the introduction of artificial intelligence allows for the automation of business processes, the optimization of resource and time use, the execution of routine processes, and the solution of complex tasks through big data analysis and pattern recognition. The main areas of application of artificial intelligence in the financial sector are: payments, financial intermediation, insurance, and asset management. In these areas, the use of artificial intelligence im- proves the efficiency of financial services by reducing the costs of internal transaction processing, regulatory compliance, fraud detection, and customer service. At the same time, the use of AI generates new sources of cyber risks and exacerbates problems of bias and discrimination in financial decision-making, which contributes to an increase in legal and operational risks.

Keywords: artificial intelligence, machine learning, neural networks, large language models, generative artificial intelligence, artificial intelligence agents, general artificial intelligence, application of artificial intelligence in payments, lending, insurance and asset management, risks of artificial intelligence implementation.

JEL: C63, G21, G22, O33

EDN: EQJOKW

DOI: https://doi.org/10.52180/2073-6487_2025_6_147_169

References

  1. Aldasoro , Gambacorta L., Korinek A., Shreeti V., Stein M. Intelligent Financial System: How AI Is Transforming Finance // BIS Working Papers. 2024. No. 1194, June. https://www.bis.org/publ/work1194.pdf (accessed: 10.08.2025).
  2. Aldasoro I., Armantier O., Doerr S., Gambacorta L., Oliviero T. Survey Evidence on Gen AI and Households: Job Prospects Amid Trust Concerns // BIS Bulletin. 2024. No. 86, April. https://www.bis.org/publ/bisbull86.pdf (accessed: 10.08.2025).
  3. Bank for International Settlements (BIS). Artificial Intelligence and the Economy: Implications for Central Banks // Annual Economic Report. 2024. June. Рp. 91–127. http://www.bis.org/publ/arpdf/ar2024e3.pdf (accessed: 10.08.2025).
  4. Basel Committee on Banking Supervision (BCBS). Digitalisation of Finance. 2024. May. https://www.bis.org/bcbs/publ/d575.pdf (accessed: 10.08.2025).
  5. Bell A., KorinekA. AI’s Economic Peril // Journal of Democracy. 2023. Vol. 34. No. 4. Рp. 151–161.
  6. Board of Governors of the Federal Reserve System (BGoFRS). Money and Payments: The U.S. Dollar in the Age of Digital Transformation. 2022. January. https://www.federalreserve.gov/publications/files/money-and-payments-20220120.pdf (accessed: 10.08.2025).
  7. Borchert L., De Haas R., Kirschenmann K., Schultz A. Broken Relationships: De-risking by Correspondent Banks and International Trade // EBRD Working Papers. 2023. No. 285. December.
  8. Boyd D., Crawford K. Critical Questions for Big Data // Information, Communication & Society. 2012. Vol. 15. No. 5. Рp. 662–79. DOI: 10.1080/1369118X.2012.678878.
  9. Browning J., LeCun Y. AI and the Limits of Language // Noema. 2022. 23 August.
  10. Chen S., Doerr S., Frost J., Gambacorta L., Shin H.S. The Fintech Gender Gap // Journal of Financial Intermediation. Elsevier. 2023. Vol. 54. DOI: 10.1016/j.jfi.2023.101026.
  11. Committee on Payments and Market Infrastructures (CPMI). CPMI Quantitative Review of Correspondent Banking Data, 2023. May. https://www.bis.org/cpmi/paysysinfo/corr_bank_data.htm (accessed: 10.08.2025).
  12. Chow T., Halperin B., Mazlish J.Z. Transformative AI, Existential Risk, and Asset Pricing. Working Paper. 2023. https://www.basilhalperin.com/papers/ agi_emh.pdf (accessed: 10.08.2025).
  13. Cornelli G., Frost J., Gambacorta L., Rau R., Wardrop R., Ziegler T. Fintech and Big Tech Credit: Drivers of the Growth of Digital Lending // Journal of Banking and Finance. 2023. Vol. 148. March. DOI: 10.1016/j.jbankfin.2022.106742.
  14. Di Maggio, Ratnadiwakara M.D., Carmichael D. Invisible Primes: Fintech Lending with Alternative Data // NBER Working Papers. 2023. No. 29840.
  15. Doerr S., Gambacorta L., Guiso L., Sanchez del-Villar M. Privacy regulation and fintech lending // BIS Working Papers. 2023. No. 1103. June. https://www.bis.org/publ/work1103.pdf (accessed: 10.08.2025).
  16. European Central Bank (ECB). Eurosystem Report on the Public Consultation on a Digital Euro, 2021. April. https://www.ecb.europa.eu/pub/pdf/other/ Eurosystem_report_on_the_public_consultation_on_a_digital_euro~539fa8cd8d.e.pdf (accessed: 10.08.2025).
  17. Federal Reserve Bank of New York. Survey of Consumer Expectations. 2024. https://libertystreeteconomics.newyorkfed.org/2024/10/exposure-to-generative-ai-andexpectations-about-inequality/ (accessed: 10.08.2025).
  18. Grand G., Blank I., Pereira F., Fedorenko E. Semantic Projection Recovers Rich Human Knowledge of Multiple Object Features from Word Embeddings // Nature Human Behaviour. 2022. Vol. 6. Рp. 975–987.
  19. Hitaj D., Pagnotta G., Hitaj B., Mancini L., Perez-Cruz F. MaleficNet: Hiding Malware into Deep Neural Networks Using Spread-Spectrum Channel Coding. In: V. Atluri, R.Di Pietro, C. Jensen, W. Meng (eds.). Computer security – ESORICS 2022. Springer Cham, 2022. 23 September. DOI: 10.1007/978-3-031-17143-7_21.
  20. Korinek A., Stiglitz J.E. Artificial Intelligence, Globalization, and Strategies for Economic Development // NBER Working Paper. 2012. No. 28453. https://www.nber.org/system/files/working_papers/w28453/w28453.pdf (accessed: 10.08.2025).
  21. Korinek A., Vipra J. Concentrating Intelligence: Scaling Laws and Market Structure in Generative AI // Institute for New Economic Thinking Working Paper Series. 2024. No. 228. April. https://papers.ssrn.com/sol3/Delivery.cfm/5044496.pdf?abstractid=5044496&mirid=1 (accessed: 10.08.2025).
  22. McKinsey & Company. Scaling Gen AI in Banking: Choosing the Best Operating Model, 2024. March. https://www.mckinsey.com/industries/financial-services/our-insights/scaling-gen-ai-in-banking-choosing-the-best-operating-model (accessed: 10.08.2025).
  23. McKinsey & Company. The State of AI in Early 2024: Gen AI Adoption Spikes and Starts to Generate Value, 2024. May. https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-2024 (accessed: 10.08.2025).
  24. Noy S., Zhang W. Experimental Evidence on the Productivity Effects of Generative Artificial Intelligence // Science. 2023. 381 (6654). Pp. 187–192. DOI: 10.2139/ssrn.4375283.
  25. Organisation for Economic Co-operation and Development (OECD). Generative Artificial Intelligence in Finance // OECD Artificial Intelligence Papers. 2023. No. 9. December. https://www.oecd.org/content/dam/oecd/en/publications/reports/2023/12/generative-artificial-intelligence-in-finance_37bb17c6/ac7149cc-en.pdf (accessed: 10.08.2025).
  26. Park T., Shin H.S., Williams H. Mapping the Space of Economic Ideas with LLMs // BIS Working Papers, 2024.
  27. People’s Bank of China (PBoC). Progress of Research & Development of E-CNY in China, 2021. July. http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/2021072014364791207.pdf (accessed: 10.08.2025).
  28. Perez-Cruz F., Shin H.S. Testing the Cognitive Limits of Large Language Models // BIS Bulletin, 2024. No. 83, January. https://www.bis.org/publ/bisbull83.pdf (accessed: 10.08.2025).
  29. Rice T., G. von Peter, Boar C. On the Global Retreat of Correspondent Banks // BIS Quarterly Review. 2020. March. Pp. 37–52. https://www.bis.org/publ/qtrpdf/ r_qt2003g.pdf (accessed: 10.08.2025).
  30. Rosenblatt F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain // Psychological Review. 1958. Vol. 65. No. 6. Pp. 386–408. DOI: 10.1037/h0042519.
  31. Russell S., Norvig P. Artificial Intelligence: A Modern Approach. Pearson, 4th Edition, 2021.
  32. Turing A.M. Computing Machinery and Intelligence // Mind. 1950. October. Vol. LIX. Issue 236. Pp. 433–460. DOI: 10.1093/mind/LIX.236.433.
  33. Turing A.M. On Computable Numbers, with an Application to the Entscheidungsproblem // Proceedings of the London Mathematical Society. 1936. Series 2. Vol. 42. Pp. 230–265.
  34. Zhu L., Wu H., Wells M. News-Based Sparse Machine Learning Models for Adaptive Asset Pricing // Data Science in Science. 2023. Vol. 2. No. 1.
  35. United States Government Accountability Office (GAO). Artificial Intelligence: Use and Oversight in Financial Services. Report to Congressional Committees, 2025. May. https://www.gao.gov/assets/gao-25-107197.pdf (accessed: 10.08.2025).
  36. White House. Strengthening American Leadership in Digital Financial Technology. Executive Order 14178. 23.01.25. https://www.whitehouse.gov/presidentialactions/2025/01/strengthening-american-leadership-in-digital-financial-technology/ (accessed: 10.08.2025).

Manuscript submission date: 01.09.2025

Manuscript acceptance date: 18.11.2025

 

For citation:

Kochergin D.A. Main trends in the use of artificial intelligence in the financial sector // Vestnik Instituta Ekonomiki Rossiyskoy Akademii Nauk. 2025. № 6 Pp. 147-169. (In Russ.). https://doi.org/10.52180/2073-6487_2025_6_147_169 EDN: EQJOKW

  Creative Commons 4.0

The Bulletin of the Institute of Economics of the Russian Academy of Sciences № 4/2025. Finance.

Alexander A. Rubinstein

Cand. Sci. (Econ.), Senior Researcher, Institute of Economics of the RAS, Moscow, Russia

 

ON THE QUESTION OF KEY RATE REDUCTION

Размер файла125-149 Размер файла  1.07 MB Размер файла Full text

Since October 2024, the key rate in the Russian Federation exceeds the profitability of a significant number of economic sectors, resulting in such risks as difficulty in lending, the possibility of sliding into recession, and the emergence of a monetary overhang due to individual deposit growth. Using the example of a similar situation in the USA in 1980–1982 with the help of the model of the shifting mode of reproduction (SMR model) the importance of additional commodity supply is shown, which was provided by a strong rise in import supplies. An alternative series of precautionary measures damping the negative effects of a key rate cut is also proposed. On possible options, approximate calculations of the consequences were made with the help of the SMR model.

Keywords: inflation, key rate, recession, fixed capital investment, shifting mode of reproduction model (SMR model).

JEL: C02, E22, E42

EDN: CQJRQH

DOI: https://doi.org/10.52180/2073-6487_2025_4_125_149

References

  1. Ershov M.V. Some features of the current development and possible instruments of economic growth // Research papers of the Free Economic Society of Russia. 2023. Vol. 239. Р 356–364. (In Russ.). DOI: 10.38197/2072-2060-2023-239-1-356-364.
  2. Shirov A.A., Gusev M.S., Nekrasov F.O. The nature of inflation in the modern Russian economy and its impact on economic growth. Studies on Russian Economic Development. 2025. No. 2. Р 5–19. (In Russ.). DOI: 10.47711/0868-6351-209-5-19.
  3. Golovnin M.Yu. Speech at the XIV International Scientific and Practical Conference “Abalkin Readings” April 23, 2025. Plekhanov Russian Economic University. Mechanisms for achieving Russia’s national goals.
  4. Tobin J. A General Equilibrium Approach to Monetary Theory // Journal of Money, Credit and Banking. Vol. 1. No. 1. Рp. 15–29.
  5. Ershov M.V. Global trends in the world economy and new opportunities for Russia. Voprosy Ekonomiki. 2024. No. 12. Р 5–28. (In Russ.). DOI: 10.32609/0042-8736-2024-12-5-28.
  6. Alekseev A.V. Monetary policy as a tool of planned economic management. // Herald of the Russian Academy of Sciences. 2025. Vol. 95. No. 1. Р 28–37. (In Russ.). DOI: 10.31857/S0869587325010038.
  7. Volcker P. Dealing with Inflation: Obstacles and Opportunities // Remarks at the Alfred M. Landon Lecture Series on Public Issues, Kansas State University, 1981. https://fraser.stlouisfed.org/title/statements-speeches-paul-a-volcker-451/dealing-inflation-obstaclesopportunities-8236/fulltext
  8. Krugman P. The Age of Diminished Expectations. The MIT Press Cambridge. 1997.
  9. Maevsky V. I., Malkov, S. Yu. Transition from simple reproduction to economic growth. Advances in physical sciences. 2011. Vol. 181. No. 7. Рp. 753–757. (In Russ.).
  10. Maevsky V. I., Malkov S. Yu., Rubinstein A. A. Features and Problems of Modeling the Shifting Mode of Reproduction. Economics and Mathematical Methods. 2015. Vol. 51. No. 1. Р 26–44. (In Russ.).
  11. Maevsky V. I., Malkov, S.Yu., Rubinstein A.A., Krasilnikova E.V. On one direction of development of the mesoeconomics. Journal of Institutional Studies. 2019. 11(3). Рp. 21–38. (In Russ.). DOI: 10.17835/2076-6297.2019.11.3.021-038.
  12. Rubinstein A.A. Extended version of FCG model with endogenous inflation // Economics and Mathematical Methods. 2020. Vol. 56. No. 4. Р 28–37. (In Russ.). DOI: 10.31857/S042473880012424-5.
  13. Ivanchenko I. S., Nivorozhkina L.I. Assessment of the impact of the money supply on Russian GDP growth rates. Finance: Theory and Practice. No. 29 (1). Рp. 34–44. (In Russ.). DOI: 10.26794/2587-5671-2025-29-1-34-44.
  14. Smirnov V.D. In Search of an Effective Solution to Inflation Management. Journal of Modern Competition. 2025. Vol. 19. No. 1. Р 122–140 (In Russ.). DOI: 10.37791/2687-0657-2025-19-1-122-140.
  15. Glazyev S.Yu., Sukharev O.S. Economic growth and monetary policy in Russia. Journal of New Economy. 2025. Vol. 26. No. 1. Р 6–30. (In Russ.). DOI: 10.29141/2658-5081-2025-26-1-1.
  16. Maevsky V. I. The Possibility of Targeting Economic Growth: Theoretical Aspect. AlterEconomics. 2024. No. 21 (2). Р 159–178. (In Russ.). DOI:10.31063/AlterEconomics/2024.21-2.1.
  17. Mayevsky V.I., Malkov S.Y., Rubinstein A.A. Macroeconomic conditions of Russia’s transition to high growth rates: China’s experience. Voprosy Ekonomiki. 2023. No. 10. Pp. 98–123. (In Russ.). DOI:10.32609/0042-8736-2023-10-98-123.
  18. Mayevsky V.I., Malkov S.Yu., Rubinstein A.A. Analysis of the relationship between issuing money, inflation and economic growth with the help of the SMR-model. Voprosy Ekonomiki. 2019. No. 8. Pp. 45–66. (In Russ.). DOI: 10.32609/0042-8736-2019-8-45-66.

Manuscript submission date: 25.05.2025

Manuscript acceptance date: 07.08.2025

 

For citation:

Rubinstein A.A. On the question of key rate reduction// Vestnik Instituta Ekonomiki Rossiyskoy Akademii Nauk. 2025. № 4. Pp. 125-149. (In Russ.). https://doi.org/10.52180/2073-6487_2025_4_125_149 EDN: CQJRQH

  Creative Commons 4.0

© Vestnik Instituta Ekonomiki Rossiyskoy Akademii Nauk, 2021 - 2025

32, Nakhimovskiy Prospekt, Moscow, Russia 117218, Institute of Economics of the Russian Academy of Sciences.

Phone.: +7 (499) 724-13-91, E-mail: vestnik-ieran@inecon.ru