The Bulletin of the Institute of Economics of the Russian Academy of Sciences № 5/2025. Finance.

Nikolai G. Sinyavsky

Dr. Sci. (Econ.), Associate Professor, Leading Researcher, Institute of Economic Policy and Economic Security Problems, Faculty of Economics and Business, Financial University under the Government of the Russian Federation, Moscow, Russia

ORCID: 0000-0003-1034-6489

 

SYSTEMIC RISK FACTORS IN THE IMPLEMENTATION OF DIGITAL TECHNOLOGIES TO ANTI-MONEY LAUNDERING: IDENTIFICATION, RANKING AND REGULATORY MEASURES

Размер файла167-187  Размер файла  335.54 KB Размер файла Full text

Digital products have the potential to make anti-money laundering and counter-terrorist financing operations less costly, more efficient and significantly faster, ensure high-quality compliance with the Financial Action Task Force Standards and improve cross-border cooperation. This enables financial institutions to provide services to a greater number of economic entities. Therefore, the global anti-money laundering system is widely introducing innovative digital technologies to provide prompt and reliable information about economic entities and their operations by significantly increasing the volume of processed data. However, their use is associated with regulatory or operational systemic risks. The purpose of the study is to identify risk factors and measures to regulate them for systemic risks, as well as to systematize and rank them by importance. Such ordering provides grounds for the appropriate distribution of resources used to influence risk factors. The level of risks, risk factors and measures for their regulation are assessed on the basis of a risk-oriented approach using surveys of authoritative organizations, research by specialists and regulatory documents.

Keywords: anti-money laundering, Financial Action Task Force on Money Laundering (FATF), digitalization, risks.

JEL: O33, O38, L73

EDN: LTKMAC

DOI: https://doi.org/10.52180/2073-6487_2025_5_167_187

References

  1. Kozyrev A.N. The Data Economy and the Digital Economy // Digital Economy. 2024. Vol. 2. No. 28. Pp. 5–14. (In Russ.). DOI: 10.33276/DE-2024-02-01. EDN: BFNYBQ.
  2. Tapscott D. The Digital Economy: Promise and Peril In The Age of Networked Intelligence: Monograph. New York, McGrawHill, 1995.
  3. Tapscott D. The Digital Economy Anniversary Edition: Rethinking Promise and Peril In the Age of Networked Intelligence: Monograph. New York, McGraw-Hill, 2014.
  4. Coase R. The Nature of the Firm // Econometrica. 1937. Vol. 4. No. 16. Pp. 386–405. DOI: 10.1111/j.1468-0335.1937.tb00002.x.
  5. Tapscott D., Agnew D. Governance in the Digital Economy // Finance & Development. 1999. December. Pp. 34–37. https://www.imf.org/external/pubs/ft/fandd/1999/12/pdf/tapscott.pdf (accessed: 31.08.2025).
  6. Abasov I.R., Galimkhanov A.B., Yusupov R.G. On the monitoring and supervision of the state authorities of the Russian Federation in the field of education in the context of the digital technologies development // The Rule-of-Law State: Theory and Practice. 2023. No. 4. Pp. 62–70. (In Russ.). DOI: 10.33184/pravgos-2023.4.7. EDN: SZURHB.

Manuscript submission date: 19.05.2025

Manuscript acceptance date: 13.10.2025

 

For citation:

Sinyavsky N.G. Systemic risk factors in the implementation of digital technologies to anti-money laundering: identification, ranking and regulatory measures // Vestnik Instituta Ekonomiki Rossiyskoy Akademii Nauk. 2025. № 5. Pp. 167-187. (In Russ.). https://doi.org/10.52180/2073-6487_2025_5_167_187 EDN: LTKMAC

  Creative Commons 4.0

The Bulletin of the Institute of Economics of the Russian Academy of Sciences № 4/2025. Finance.

Alexander A. Rubinstein

Cand. Sci. (Econ.), Senior Researcher, Institute of Economics of the RAS, Moscow, Russia

 

ON THE QUESTION OF KEY RATE REDUCTION

Размер файла125-149 Размер файла  1.07 MB Размер файла Full text

Since October 2024, the key rate in the Russian Federation exceeds the profitability of a significant number of economic sectors, resulting in such risks as difficulty in lending, the possibility of sliding into recession, and the emergence of a monetary overhang due to individual deposit growth. Using the example of a similar situation in the USA in 1980–1982 with the help of the model of the shifting mode of reproduction (SMR model) the importance of additional commodity supply is shown, which was provided by a strong rise in import supplies. An alternative series of precautionary measures damping the negative effects of a key rate cut is also proposed. On possible options, approximate calculations of the consequences were made with the help of the SMR model.

Keywords: inflation, key rate, recession, fixed capital investment, shifting mode of reproduction model (SMR model).

JEL: C02, E22, E42

EDN: CQJRQH

DOI: https://doi.org/10.52180/2073-6487_2025_4_125_149

References

  1. Ershov M.V. Some features of the current development and possible instruments of economic growth // Research papers of the Free Economic Society of Russia. 2023. Vol. 239. Р 356–364. (In Russ.). DOI: 10.38197/2072-2060-2023-239-1-356-364.
  2. Shirov A.A., Gusev M.S., Nekrasov F.O. The nature of inflation in the modern Russian economy and its impact on economic growth. Studies on Russian Economic Development. 2025. No. 2. Р 5–19. (In Russ.). DOI: 10.47711/0868-6351-209-5-19.
  3. Golovnin M.Yu. Speech at the XIV International Scientific and Practical Conference “Abalkin Readings” April 23, 2025. Plekhanov Russian Economic University. Mechanisms for achieving Russia’s national goals.
  4. Tobin J. A General Equilibrium Approach to Monetary Theory // Journal of Money, Credit and Banking. Vol. 1. No. 1. Рp. 15–29.
  5. Ershov M.V. Global trends in the world economy and new opportunities for Russia. Voprosy Ekonomiki. 2024. No. 12. Р 5–28. (In Russ.). DOI: 10.32609/0042-8736-2024-12-5-28.
  6. Alekseev A.V. Monetary policy as a tool of planned economic management. // Herald of the Russian Academy of Sciences. 2025. Vol. 95. No. 1. Р 28–37. (In Russ.). DOI: 10.31857/S0869587325010038.
  7. Volcker P. Dealing with Inflation: Obstacles and Opportunities // Remarks at the Alfred M. Landon Lecture Series on Public Issues, Kansas State University, 1981. https://fraser.stlouisfed.org/title/statements-speeches-paul-a-volcker-451/dealing-inflation-obstaclesopportunities-8236/fulltext
  8. Krugman P. The Age of Diminished Expectations. The MIT Press Cambridge. 1997.
  9. Maevsky V. I., Malkov, S. Yu. Transition from simple reproduction to economic growth. Advances in physical sciences. 2011. Vol. 181. No. 7. Рp. 753–757. (In Russ.).
  10. Maevsky V. I., Malkov S. Yu., Rubinstein A. A. Features and Problems of Modeling the Shifting Mode of Reproduction. Economics and Mathematical Methods. 2015. Vol. 51. No. 1. Р 26–44. (In Russ.).
  11. Maevsky V. I., Malkov, S.Yu., Rubinstein A.A., Krasilnikova E.V. On one direction of development of the mesoeconomics. Journal of Institutional Studies. 2019. 11(3). Рp. 21–38. (In Russ.). DOI: 10.17835/2076-6297.2019.11.3.021-038.
  12. Rubinstein A.A. Extended version of FCG model with endogenous inflation // Economics and Mathematical Methods. 2020. Vol. 56. No. 4. Р 28–37. (In Russ.). DOI: 10.31857/S042473880012424-5.
  13. Ivanchenko I. S., Nivorozhkina L.I. Assessment of the impact of the money supply on Russian GDP growth rates. Finance: Theory and Practice. No. 29 (1). Рp. 34–44. (In Russ.). DOI: 10.26794/2587-5671-2025-29-1-34-44.
  14. Smirnov V.D. In Search of an Effective Solution to Inflation Management. Journal of Modern Competition. 2025. Vol. 19. No. 1. Р 122–140 (In Russ.). DOI: 10.37791/2687-0657-2025-19-1-122-140.
  15. Glazyev S.Yu., Sukharev O.S. Economic growth and monetary policy in Russia. Journal of New Economy. 2025. Vol. 26. No. 1. Р 6–30. (In Russ.). DOI: 10.29141/2658-5081-2025-26-1-1.
  16. Maevsky V. I. The Possibility of Targeting Economic Growth: Theoretical Aspect. AlterEconomics. 2024. No. 21 (2). Р 159–178. (In Russ.). DOI:10.31063/AlterEconomics/2024.21-2.1.
  17. Mayevsky V.I., Malkov S.Y., Rubinstein A.A. Macroeconomic conditions of Russia’s transition to high growth rates: China’s experience. Voprosy Ekonomiki. 2023. No. 10. Pp. 98–123. (In Russ.). DOI:10.32609/0042-8736-2023-10-98-123.
  18. Mayevsky V.I., Malkov S.Yu., Rubinstein A.A. Analysis of the relationship between issuing money, inflation and economic growth with the help of the SMR-model. Voprosy Ekonomiki. 2019. No. 8. Pp. 45–66. (In Russ.). DOI: 10.32609/0042-8736-2019-8-45-66.

Manuscript submission date: 25.05.2025

Manuscript acceptance date: 07.08.2025

 

For citation:

Rubinstein A.A. On the question of key rate reduction// Vestnik Instituta Ekonomiki Rossiyskoy Akademii Nauk. 2025. № 4. Pp. 125-149. (In Russ.). https://doi.org/10.52180/2073-6487_2025_4_125_149 EDN: CQJRQH

  Creative Commons 4.0

The Bulletin of the Institute of Economics of the Russian Academy of Sciences № 2/2025.  Finance.

Konstantin D. Plachinda

Master’s student at the Faculty of Economics, Lomonosov Moscow State University, Expert at the Banking Book Interest Rate Risk Management Department, PJSC “Credit Bank of Moscow”, Moscow, Russia

 

THE IMPACT OF CHANGES IN OVERNIGHT INTEREST RATES ON THE MOSCOW EXCHANGE INDUSTRY INDICES

Размер файла120-143 Размер файла  1018.54 KB Размер файла Full text

The study evaluates the impact of changes in the overnight RUONIA rate on the dynamics of the Moscow Exchange industry total return indices. The analysis included index quotations, calculation of implied in interest rate swaps RUONIA rates for T+1, and the development of predictive models using machine learning, followed by their backtesting. The results show that the models correctly predict the direction of index changes in more than 50% of cases. A connection between changes in the implied RUONIA rate and index dynamics was identified. This confirms that the RUONIA rate and its forecast can be used to improve the prediction of index price movements, optimizing portfolio theory and investor strategies.

Keywords: monetary policy, monetary policy, key rate, stocks, stock market, sectoral indices, investments.

JEL: G11, G15, G17, G18

EDN: OKWWLJ

DOI: https://doi.org/10.52180/2073-6487_2025_2_120_143

References

  1. Kartaev F.S., Kozlova N.S. Econometric assessment of the impact of monetary policy on the dynamics of the Russian stock market // Moscow University Bulletin. Series 6. Economics. 2016. No. 1. Pp. 22-43. EDN: VQSZLD. DOI: 10.38050/01300105201612
  2. Kudinova M.M. Transformation of state monetary policy during the global pandemic // Finance: Theory and Practice. 2022. Vol. 26. No. 1. Pp. 41-54. EDN: ULXFMJ. DOI: 10.26794/2587-5671-2022-26-1-41-54
  3. Blanchard O.J. Output, the stock market, and interest rates // The American Economic Review. 1981. Vol. 71. No. 1. Pp. 132-143.
  4. Brewer III.E. et al. Interest rate risk and equity values of life insurance companies: A GARCH–M model // Journal of Risk and Insurance. 2007. Vol. 74. No. 2. Pp. 401-423. DOI: 10.1111/j.1539-6975.2007.00218.x
  5. Cao G. Time-varying effects of changes in the interest rate and the RMB exchange rate on the stock market of China: Evidence from the long-memory TVP-VAR model // Emerging Markets Finance and Trade. 2012. Vol. 48. No. sup2. Pp. 230-248. DOI: 10.2753/ree1540-496x48s213
  6. Conover C.M. et al. Is Fed policy still relevant for investors? // Financial Analysts Journal. 2005. Vol. 61. No. 1. Pp. 70-79. DOI: 10.2469/faj.v61.n1.2685
  7. Conover C.M., Jensen G.R., Johnson R.R. Monetary conditions and international investing // Financial Analysts Journal. 1999. Vol. 55. No. 4. Pp. 38-48. DOI: 10.2469/faj.v55.n4.2283
  8. Chen S.S. Does monetary policy have asymmetric effects on stock returns? // Journal of money, credit and banking. 2007. Vol. 39. No. 2-3. Pp. 667-688. DOI: 10.1111/j.0022-2879.2007.00040.x
  9. Durham J.B. More on monetary policy and stock price returns // Financial Analysts Journal. 2005. Vol. 61. No. 4. Pp. 83-90. DOI: 10.2469/faj.v61.n4.2745
  10. Ehrmann M., Fratzscher M. Taking stock: Monetary policy transmission to equity markets // Journal of Money, Credit and Banking. 2004. Pp. 719-737.
  11. Elyasiani E., Mansur I. Sensitivity of the bank stock returns distribution to changes in the level and volatility of interest rate: A GARCH-M model // Journal of banking & finance. 1998. Vol. 22. No. 5. Pp. 535-563. DOI: 10.1016/S0378-4266(98)00003-X
  12. English W.B., Van den Heuvel S.J., Zakrajšek E. Interest rate risk and bank equity valuations // Journal of Monetary Economics. 2018. Vol. 98. Pp. 80-97. DOI: 10.1016/j.jmoneco.2018.04.010
  13. Guo H., Hung C.H.D., Kontonikas A. The Fed and the stock market: A tale of sentiment states // Journal of International Money and Finance. 2022. Vol. 128. 102707. DOI: 10.1016/j.jimonfin.2022.102707
  14. Hajilee M., Nasser O.M.A. The impact of interest rate volatility on stock market development: Evidence from emerging markets // The Journal of Developing Areas. 2017. Vol. 51. No. 2. Pp. 301-313. DOI: 10.1353/jda.2017.0046
  15. Jensen G.R., Johnson R.R. Discount rate changes and security returns in the US, 1962-1991 // Journal of Banking & Finance. 1995. Vol. 19. No. 1. Pp. 79-95. DOI: 10.1016/0378-4266(94)00048-8
  16. Jensen G.R., Mercer J.M. New evidence on optimal asset allocation // Financial Review. 2003. Vol. 38. No. 3. Pp. 435-454. DOI: 10.1111/1540-6288.00054
  17. Jensen G.R., Mercer J.M. Security markets and the information content of monetary policy turning points // The Quarterly Review of Economics and Finance. 2006. Vol. 46. 4. Pp. 477-494. DOI: 10.1016/j.qref.2004.08.002
  18. Litzenberger R.H., Tuttle D.L. Interest Rate Changes and the Required Rate of Return on Risk Assets // Southern Economic Journal. 1970. Pp. 45-50. DOI: 10.2307/1056235
  19. Patelis A.D. Stock return predictability and the role of monetary policy // The Journal of Finance. 1997. Vol. 52. No. 5. Pp. 1951-1972. DOI: 10.1111/j.1540-6261.1997.tb02747.x
  20. Thorbecke W. On stock market returns and monetary policy // The Journal of Finance. 1997. Vol. 52. No. 2. Pp. 635-654. DOI: 10.1111/j.1540-6261.1997.tb04816.x
  21. Tobin J. A general equilibrium approach to monetary theory // Journal of money, credit and banking. 1969. Vol. 1. No. 1. Pp. 15-29. DOI: 10.2307/1991374

Manuscript submission date: 08.01.2025

Manuscript acceptance date: 16.04.2025

 

For citation:

Plachinda K.D. The Impact of changes in overnight interest rates on the Moscow Exchange industry indices // Vestnik Instituta Ekonomiki Rossiyskoy Akademii Nauk. 2025. № 2. Pp. 120-143. (In Russ.). https://doi.org/10.52180/2073-6487_2025_2_120_143  EDN: OKWWLJ

  Creative Commons 4.0

The Bulletin of the Institute of Economics of the Russian Academy of Sciences № 3/2025. Finance.

Daria A. Dinets

Dr. Sci. (Econ.), Head of the Department of Finance and Credit, Peoples’ Friendship University of Russia named after Patrice Lumumba, Moscow, Russia

ORCID: 0000-0001-8734-8998

 

THEORETICAL BASIS OF PLATFORM FINANCIAL SOLUTIONS FOR THE STATE STRUCTURAL POLICY USE

Размер файла123-147 Размер файла  358.8 KB Размер файла Full text

The article provides an overview of theoretical approaches and justifications for using financial platforms in centralized and decentralized finance. The theoretical review allowed us to identify those characteristic features of financial platforms that, at this historical stage of development, can be used to overcome structural imbalances in the Russian economy and provide industrial clusters with the financial resources necessary to build up their competitive potential. As a result, the author’s approach to building the architecture of a financial platform – a supplier of resources for the implementation of priority projects for the structural transformation of the Russian economy – is proposed.

Keywords: financial platforms, tokenization of real assets, industrial clusters, financial policy.

JEL: E63

EDN: UEIEBW

DOI: https://doi.org/10.52180/2073-6487_2025_3_123_147

References

  1. Scott B. Cloud Money. Cash, cards, cryptocurrency and the struggle for our wallets. Moscow: AST Publishing House: CORPUS, 2023. (In Russ.).
  2. Vasiliev S. A., Nikonova I. A., Miroshnichenko O. S. Banks, financial platforms and Big Data: development trends and regulatory directions // Financial Journal. 2022. Vol. 14. No. 5. Pp. 105-119. (In Russ.). DOI: 10.31107/2075-1990-2022-5-105-119.
  3. Gudgeon L., Perez D., Harz D., Livshits B., Gervais A. The Decentralized Financial Crisis. 2020 Crypto Valley Conference on Blockchain Technology (CVCBT). Switzerland. Rotkreuz. 2020. Р 1–15. DOI: 10.1109/CVCBT50464.2020.00005.
  4. Pashkovskaya I.V. Decentralized Finance and prospects for creating a two-circuit economy // Financial markets and banks. 2023. No. 4. Pp. 78-85. (In Russ.).
  5. Sannikova L.V. Risk factors for the use of cryptoassets in Russia and the potential for their reduction // Financial Journal. 2022. Vol. 14. No. 6. Pp. 124-138. (In Russ.). DOI: 10.31107/2075-1990-2022-6-124-138.
  6. Bernardo David, Peter Gazi, Aggelos Kiayias and Alexander Russell. Ouroboros praos: An adaptively-secure semi-synchronous proof-of-stake blockchain. Annual International Conference on the Theory and Applications of Cryptographic Techniques. Рp. 66–98.
  7. Akulinkin S. S. The use of distributed registry technology in the formation of a cross-border payment infrastructure // Financial markets and banks. 2023. No. 9. Pp. 30-37. (In Russ.).
  8. Skoblikov E.A. Ensuring the growth of the Russian economy based on the digitalization of registration and payment operations // Finance and Credit. 2018. Vol. 24. No. 11. Pp. 2578-2 596. (In Russ.). DOI: 10.24891/fc.24.11.2578.
  9. Kuimov V. V., Shcherbenko E. V., Yushkova L. V. The transition to ecosystem platform interactions of regional businesses is the basis for innovative development in a new technological order. Journal of the Siberian Federal University. The university. Humanities. 2023. 16 (10). Pp. 1820-1827. (In Russ.). EDN: LCUWES.
  10. Dorofeev M.L. Prospects of blockchain in the development of finance in the green economy // Bulletin of the University. 2020. No. 5. Pp. 178-185. (In Russ.).
  11. Kochergin D.A., Andryushin S.A., Sheshukova E.S. Competition between digital currencies in the context of the transformation of traditional monetary systems // Terra Economicus. 2023. 21 (3). Pp. 32-44. (In Russ.). DOI: 10.18522/2073-6606-2023-21-3-32-44.
  12. Krylova L.V. Platforms of digital currencies of central banks as a factor of fragmentation of the global monetary system // Economy. Taxes. Right. 2024. No. 17 (2). Pp. 40-50. (In Russ.). DOI: 10.26794/1999-849X- 2024-17-2-40-50.
  13. Hasbrouck Joel, Levich Richard. FX Market Metrics: New Findings Based on CLS Bank Settlement Data // SSRN Electronic Journal. DOI: 10.2139/ssrn.2912976.
  14. Dubyansky, A.N. Local currencies as a way to decentralize money circulation // Bulletin of St. Petersburg University. Economics. 2017. No. 33 (1). Pp. 104-118. (In Russ.). DOI: 10.21638/11701/spbu05.2017.106.
  15. Makoev S. R. Platform economics in the financial market // Bulletin of SurGU. 2019. Vol. 4 (26). Pp. 53-57. (In Russ.). DOI: 10.34822/2312-3419-2019-4-53-57.
  16. Kochergin D.A. The global experience of introducing digital currencies of central banks for retail payments in emerging and developing countries // Bulletin of the Institute of Economics of the Russian Academy of Sciences. 2024. No. 5. Pp. 130-171. (In Russ.).
  17. Gusev A.I. Interest in cybersecurity as a driver of positioning medium-sized and niche banks in domestic private banking // Banking. 2024. No 11. Pp. 56-61. (In Russ.).
  18. Danilin I. The fight against Internet monopolies in China and the USA // World Economy and International Relations. 2022. Vol. 66. No. 10. Pp. 73-80. (In Russ.). DOI: 10.20542/0131-2227-2022-66-10-73-80.
  19. Sitnik A.A. The role of digital platforms in the organization of the financial market // Lex russica. 2023. Vol. 76. No. 6. Pp. 121-127. (In Russ.). DOI: 10.17803/1729-5920.2023.199.6.121-127.
  20. Andryushin S.A. Tokenization of real assets: classification, platforms, applications, opportunities and development challenges // Russian Journal of Economics and Law. 2024. No. 18 (1). Pp. 88–104(In Russ.). DOI: 10.21202/2782-2923.2024.1.88-104.
  21. Rumyantseva A.Yu., Tarutko O.A. Investment platforms and their role in the development of financial innovations // Economics and management. 2022. Vol. 28. No. 9. Pp. 912-922. (In Russ.). DOI: 10.35854/1998-1627-2022-9-912-922.
  22. Prikhodchenko O.S. Strategic regulation of digital project management in the context of innovative development of the region // Proceedings of the Southwestern State University. Series: Economics. Sociology. Management. 2021. Vol. 11. No. 6. Pp. 270-278. (In Russ.).
  23. Prokhorov Yu.N. Development of methods and tools for digital monitoring of control activities in the budgetary and procurement sphere // Financial markets and banks. No. 10, 2023. Pp. 8-12. (In Russ.).
  24. Wang Guanglong. The competitive situation in the field of financial Internet platforms and its legal regulation in China // Asia-Pacific region: economics, politics, law. 2023. Vol. 25, No. 1. Pp. 27-50. (In Russ.). DOI: 10.24866/1813-3274/2023-1/27-50.
  25. Melnikova A.S., Mylnikova E.M., Kisareva A.A. Cross-platform interaction of the digital financial and economic infrastructure of the domestic market using combined technology methods // Issues of innovative economics. 2020. Volume 10. No. 2. Pp. 941–950. (In Russ.). DOI: 10.18334/vinec.10.2.100815.
  26. Sara Biancini, Marianne Verdier. Bank-platform competition in the credit market // International Journal of Industrial Organization. 2023. Vol. 91. 103029. DOI: 10.1016/j.ijindorg.2023.103029.
  27. Platform-Based Finance: How Can Regulators Preserve Competition? https://www.cgap.org/blog/platform-based-finance-how-can-regulators-preserve-competition
  28. Grigoriev O. The age of growth. Lectures on neoconomics. The rise and decline of the global economic system. Moscow: Career Press, 2016. (In Russ.).
  29. Victoria Chynoweth. Real Estate Tokenization: A Start of a New Era in Property Management. https://www.forbes.com/sites/digital-assets/2024/03/20/realestatetokenization-a-start-of-a-new-era-in-property-management
  30. Arnold Kirimi. The Ultimate Guide to Real Estate Tokenization in 2024. https:// ninjapromo.io/the-ultimate-guide-to-real-estate-tokenization
  31. Shirov A.A., Gusev M.S., Nekrasov F.O. The nature of inflation in the modern Russian economy and its impact on economic growth // Problems of Forecasting. 2025. No. 2. Pp. 1-18. (In Russ.).

Manuscript submission date: 06.03.2025

Manuscript acceptance date: 30.06.2025

 

For citation:

Dinets D.A. Theoretical Basis of Platform Financial Solutions for the State Structural Policy Use // Vestnik Instituta Ekonomiki Rossiyskoy Akademii Nauk. 2025. № 3. Pp. 123-147. (In Russ.). https://doi.org/10.52180/2073-6487_2025_3_123_147  EDN: UEIEBW

  Creative Commons 4.0

The Bulletin of the Institute of Economics of the Russian Academy of Sciences № 2/2025.  Finance.

Andrey V. Polbin

Cand. Sci. (Econ.), Head of the Laboratory for Mathematical Modeling of Economic Processes, Gaidar Institute for Economic Policy; Leading Researcher, Financial University under the Government of the Russian Federation, Moscow, Russia

ORCID: 0000-0003-4683-8194

 

Margarita A. Kropocheva

Researcher, Laboratory for Mathematical Modeling of Economic Processes, Gaidar Institute for Economic Policy, Moscow, Russia

ORCID: 0000-0001-5069-7094

 

THE IMPACT OF DOWNWARD NOMINAL WAGE RIGIDITY ON FISCAL AND MONETARY POLICY IN RUSSIA

Размер файла93-119  Размер файла  905.94 KB Размер файла Full text

This paper evaluates the impact of downward nominal wage rigidity (DNWR) on fiscal and monetary policy for Russian economy. We obtain a piecewise linear approximation of the solution for DSGE model, which makes it possible to take into account the constraint on wage dynamics. The results indicate greater efficiency of fiscal policy during a recession compared to an economic expansion. In addition, the dependence of the multipliers value on the nature of the shock affecting the economy is noted. The efficiency of monetary policy, on the contrary, is lower in the presence of DNWR. The results of the study allow us to conclude that DNWR plays a significant role as one of the factors weakening the impact of monetary policy and causing the asymmetry of government spending multipliers. The results of the study can be useful in planning fiscal and monetary policy, as well as in constructing DSGE models that capture more complex dynamics of economic indicators.

Keywords: dynamic stochastic general equilibrium models, DSGE, government spending multiplier, downward nominal wage rigidity, DNWR.

JEL: C68, E63

EDN: LTTGAI

DOI: https://doi.org/10.52180/2073-6487_2025_2_93_119

References

  1. Ivashchenko S. Long-term growth sources for sectors of Russian economy // Journal of the New Economic Association. 2020. Vol. 48. No. 4. Pp. 86–112. EDN: SJEEYV. (In Russ.).
  2. Lomonosov D. Shocks of Business Activity and Specific Shocks to Oil Market in DSGE Model of Russian Economy and Their Influence Under Different Monetary Policy Regimes // Russian Journal of Money and Finance. 2023. Vol. 82. No. 4. Pp. 44–79. EDN: SPAGIW.
  3. Shulgin A.G. How much monetary policy rules do we need to estimate DSGE model for Russia? // Applied Econometrics. 2014. Vol. 36. No. 4. Pp. 3–31. EDN: TEOKMF. (In Russ.).
  4. Andreyev M. Adding a fiscal rule into a DSGE model: How much does it change the forecasts // Bank of Russia working paper series. 2020. No. 64.
  5. Eliseev A. Short-term estimation of Russia’s GDP using a DSGE model with mixed data frequency and a panel of non-modeled variables. Bank of Russia Economic Research Report Series. 2025. No. 145. (In Russ.).
  6. Ivashchenko S. Dynamic Stochastic General Equilibrium Model with Multiple Trends and Structural Breaks // Russian Journal of Money and Finance. 2022. Vol. 81. No. 1. Pp. 46–72. EDN: UXTYTY.
  7. Kreptsev D., Seleznev S. Forecasting for the Russian Economy Using Small-Scale DSGE Models // Russian Journal of Money and Finance. 2018. Vol. 77. No. 2. Pp. 51–67. DOI: 10.31477/rjmf.201802.51
  8. Andreyev M.Y. Effectiveness of the stabilization fiscal rule for resource-rich countries // Voprosy Ekonomiki. 2022. No. 12. Pp. 72-97. (In Russ.) DOI: 10.32609/0042-8736-2022-12-72-97.
  9. Andreev M. Yu. Deep Consumer Habits and Fiscal Policy Shocks // Studies on Russian Economic Development. 2025. Vol. 36. No. 1. Pp. 53–65. DOI: 10.1134/S1075700724700527.
  10. Votinov A. I., Elkina M. A. Estimation of fiscal stimulus efficiency in Russian economy: Simple DSGE model with government sector // Financial Journal. 2018. No. 5 (43). 83-96. DOI: 10.31107/2075-1990-2018-5-83-96. (In Russ.).
  11. Ivashchenko S. Do We Need Тaylor-type Rules in DSGE? Bank of Russia working paper series. 2025. No. 144.
  12. Vikharev P., Novak A., Shulgin A. Inequality and monetary policy in a model with three groups of households // Bank of Russia working paper series. 2023. No. 113. (In Russ.).
  13. Shulgin A. Optimization of Simple Monetary Policy Rules on the Base of Estimated DSGE-model // Journal of the New Economic Association. 2015. Vol. 26. No. 2. Pp. 64–98. EDN: UBFBBV. (In Russ.).
  14. Novak A., Shulgin A. Monetary policy in an economy with regional heterogeneity: approaches based on aggregated and regional information // Bank of Russia working paper series. 2020. (In Russ.).
  15. Serkov L. A. Inter-Regional Inflation Differential as a Consequence of Heterogeneity of the Russian Economic Space // Economy of regions. 2020. Vol. 16. No. 1. Pp. 325–339. DOI: 10.17059/2020-1-24. (In Russ.).
  16. Dubrovskaya J., Shults D., Kozonogova E. Constructing a region DSGE model with institutional features of territorial development // Computation. 2022. Vol. 10. No. 7. 105. DOI: 10.3390/computation10070105.
  17. Larin A. Downward Nominal Wage Rigidity: Unions’ Merit or Firms’ Foresight? // Higher School of Economics Research Paper No. WP BRP. 2014. Vol. 86. DOI: 10.2139/ssrn.2542516.
  18. Benigno P., Antonio Ricci L. The inflation-output trade-off with downward wage rigidities // American Economic Review. 2011. Vol. 101. No. 4. Pp. 1436–1466. DOI: 10.1257/aer.101.4.1436.
  19. Amano R., Gnocchi S. Downward nominal wage rigidity meets the zero lower bound // Journal of Money, Credit and Banking. 2023. Vol. 55. No. 4. Pp. 859-887. DOI: 10.34989/swp-2017-16.
  20. Polbin A., Sinelnikov-Murylev S. Developing and impulse response matching estimation of the DSGE model for the Russian economy // Applied Econometrics. 2024. Vol. 73. No. 1. 5–34. (In Russ.). DOI: 10.22394/1993-7601-2024-73-5-34.
  21. Dickens W. T. et al. How wages change: micro evidence from the International Wage Flexibility Project // Journal of Economic Perspectives. 2007. Vol. 21. No. 2. Pp. 195–214. DOI: 10.1257/jep.21.2.195.
  22. Babecký J. et al. Downward nominal and real wage rigidity: Survey evidence from European firms // Scandinavian Journal of Economics. 2010. Vol. 112. No. 4. 884–910. DOI: 10.1111/j.1467-9442.2010.01624.x.
  23. Gorodnichenko Y., Mendoza E. G., Tesar L. L. The Finnish great depression: From Russia with love // American Economic Review. 2012. Vol. 102. No. 4. Pp. 1619–1643. DOI: 10.1257/aer.102.4.1619.
  24. Abbritti M., Fahr S. Downward wage rigidity and business cycle asymmetries // Journal of Monetary Economics. 2013. Vol. 60. No. 7. Pp. 871-886. DOI: 10.1016/j.jmoneco.2013.08.001.
  25. Auerbach A. J., Gorodnichenko Y. Measuring the output responses to fiscal policy // American Economic Journal: Economic Policy. 2012. Vol. 4. No. 2. Pp. 1–27. DOI: 10.1257/pol.4.2.1.
  26. Fazzari S. M., Morley J., Panovska I. State-dependent effects of fiscal policy // Studies in Nonlinear Dynamics & Econometrics. 2015. Vol. 19. No. 3. Pp. 285–315. DOI: 10.1515/snde-2014-0022.
  27. Shen W., Yang S. C. S. Downward nominal wage rigidity and state-dependent government spending multipliers // Journal of Monetary Economics. 2018. Vol. 98. Pp. 11-26. DOI: 10.1016/j.jmoneco.2018.04.006.
  28. Jo Y. J., Zubairy S. State-Dependent Government Spending Multipliers: Downward Nominal Wage Rigidity and Sources of Business Cycle Fluctuations // American Economic Journal: Macroeconomics. 2025. Vol. 17. No. 1. Pp. 379–413. DOI: 10.1257/mac.20220156.
  29. Canzoneri M. et al. Fiscal multipliers in recessions // The Economic Journal. 2016. Vol. 126. No. 590. Pp. 75–108. DOI: 10.1111/ecoj.12304.
  30. Schmitt-Grohé S., Uribe M. Downward nominal wage rigidity and the case for temporary inflation in the eurozone // Journal of Economic Perspectives. 2013. Vol. 27. 3. Pp. 193–212. DOI: 10.1257/jep.27.3.193.
  31. Fernández-Villaverde J. et al. Nonlinear adventures at the zero lower bound // Journal of Economic Dynamics and Control. 2015. Vol. 57. Pp. 182–204. DOI: 10.1016/j.jedc.2015.05.014.
  32. Kekre R., Lenel M. Exchange rates, natural rates, and the price of risk // University of Chicago, Becker Friedman Institute for Economics Working Paper. 2024. No. 2024–114. DOI: 10.2139/ssrn.4957831.
  33. Polyakova O.V. Effectiveness of Fiscal Policy in Different Economi c Conditions // Economic Development of Russia. 2023. 30 (10). Pp. 45–52. EDN: BIRNWO. (In Russ.).

Manuscript submission date: 18.02.2025

Manuscript acceptance date: 16.04.2025

 

For citation:

Polbin A.V., Kropocheva M.A. The Impact of downward nominal wage rigidity on fiscal and monetary policy in Russia// Vestnik Instituta Ekonomiki Rossiyskoy Akademii Nauk. 2025. № 2. Pp. 93-119. (In Russ.). https://doi.org/10.52180/2073-6487_2025_2_93_119 EDN: LTTGAI

  Creative Commons 4.0

© Vestnik Instituta Ekonomiki Rossiyskoy Akademii Nauk, 2021 - 2025

32, Nakhimovskiy Prospekt, Moscow, Russia 117218, Institute of Economics of the Russian Academy of Sciences.

Phone.: +7 (499) 724-13-91, E-mail: vestnik-ieran@inecon.ru