V. Gavrilov
graduate student of the Economics faculty of the M.V. Lomonosov Moscow State University
M.A. Ivanov
graduate student of the Economics faculty of the M.V. Lomonosov Moscow State University
O.A. Klachkova
Cand. Sci. (Econ.), associate professor at the Department of mathematical methods of analysis of economics of the Economics faculty of the M.V. Lomonosov Moscow State University
V.Yu. Korolev
Dr. Sci. (Phys.-Math.), professor, Head of the Statistics Department of the faculty of computational mathematics and cybernetics of the M.V. Lomonosov Moscow State University
Ya.A. Roshchina
Cand. Sci. (Econ.), associate professor at the Department of mathematical methods of analysis of economics of the Economics faculty of the M.V. Lomonosov Moscow State University
IMPACT OF NEWS FLOWS ON COMPONENTS OF RUSSIAN STOCK MARKET VOLATILITY
93-111 | 565.02 KB | Open .pdf |
Abstract
The paper simulates the volatility of securities returns on the Russian stock market depending on thematic news flows, entering the market, applying conditional autoregressive heteroscedasticity models. To take into account the news background, the model includes a numerical indicator, characterizing the number of news on each of the key topics as an independent regressor. The selection of topics and the construction of such an indicator are carried out by natural language processing methods. To assess the impact of the news background not on the volatility of returns as a whole, but on its components, the standard GARCH models are subject to assumptions that random errors are a mixture of two normal distributions. It was shown that one of the components has a significantly larger weight but smaller volatility. Our interpretation is «common» themes form the usual news background and have a little effect on volatility, while more rare specific themes (and so more informative) have a stronger impact on volatility.
Keywords: stock market, news analytics, volatility components, natural language processing.
JEL: С32, C53, G17
DOI: https://doi.org/10.52180/2073-6487_2022_2_93_111
References
- Aganin A.D. Russian Stock Index volatility: Oil and sanctions. Voprosy Ekonomiki. 2020; (2): 86–100. (In Russ.).
- Goloshchapova I., Andreev M. Measuring inflation expectations ofthe Russian population with the help of machine learning. Voprosy Ekonomiki. 2017; (6): 71–93. (In Russ.).
- Zhemkov M.I., Kuznetsova O.S. Verbal Interventions as a Factor of Inflation Expectations in Russia // The Journal of the New Economic Association. 2019. No 2 (42). Pp. 49–69. (In Russ.).
- V. Yu. Korolev. Probabilistic-statistical methods for the decomposition of the volatility of chaotic processes, 2011, Moscow: Moscow University Press. (In Russ.).
- S. P. Sidorov, P. Date, Balash V. A. Using news analytics data in GARCH models // Applied Econometrics. 2013. V. 29, no. 1. Pр. 82–96. (In Russ.).
- Alexander C., Lazar E. Normal mixture GARCH(1,1): Applications to exchange rate modelling // Journal of Applied Econometrics. 2006. 21(3). Pp. 307–336.
- Arago V., Nieto L. Heteroskedasticity in the returns of the mainword stock exchange indices: Volume versus GARCH effects // International Financial Markets Institute and Money. 2005. 15. Pp. 271–284.
- Ardia D., Bluteau K., Boudt K., Catania L., Trottier D.-A. Markov-Switching GARCH Models in R: The MSGARCH Package // Journal of Statistical Software. 2019. 91(4). Pp. 1–38.
- Barrusse De Luca. Discussion on the return of «denatality» in France and its perception between 1974 and 1981 // Population and Economics. 2020. 4(3). P. 33–56.
- Berry T. D., Howe K. M. Public information arrival // Journal of Finance. 1993. 49. Pp. 1331–1346.
- Bollerslev T. Generalized Autoregressive Conditional Heteroskedasticity // Journal of Econometrics. 1986. Т. 31. No 3. Рp. 307–327.
- Ederington L. H., Lee J. H. How markets process information: News releases and volatility // Journal of Finance. 1993. 48. Pp. 1161–1191.
- Engle R. F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation // Econometrica. 1982. Vol. 50. No. 4. Р. 987.
- Engle R. F., Ghysels E., Sohn B. Stock Market Volatility and Macroeconomic Fundamentals // Review of Economics and Statistics. 2013. Т. 95. No 3. Рp. 776–797.
- Francq C., Zakoian J.-M. GARCH Models: Structure, Statistical Inference and Financial Applications // Hoboken, NJ: John Wiley & Sons. 2019. 2 edition.
- Haas M. Mixed Normal Conditional Heteroskedasticity // Journal of Financial Econometrics. 2004. Т. 2. No 2. Рp. 211–250.
- Hansen P. R., Lunde A. A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)? // J. Appl. Econ. 2005. Vol. 20. No 7. Рp. 873–889.
- Janssen G. Public information arrival and volatility persistence in financial markets // The European Journal of Finance. 2004. 10. Pp. 177–197.
- Kalev P. S., Liu W.-M., Pham P. K., Jarnecic E. Public information arrival and volatility of intraday stock returns // Journal of Banking and Finance. 2004. 280 (6). P. 1447–1467.
- Kon, S. J. Models of Stock Returns–A Comparison // Journal of Finance. 1984. 39(1). Pp. 147–165.
- Laakkonen H., Lanne M. Asymmetric News Effects on Exchange Rate Volatility: Good vs. Bad News in Good vs. Bad Times // Studies in Nonlinear Dynamics & Econometrics. 2009. 14.
- Lamoureax C. G., Lastrapes W. D. Heteroskedasticity in stock return data: Volume versus GARCH effects // Journal of Business & Economic Statistics. 1990. 2. Pp. 253–260.
- Lozinskaia A., Saltykova A. Fundamental Factors Affecting the MOEX Russia Index: Retrospective Analysis // CEUR Workshop Proceedings. 2019. 2479. Pp. 32–45.
- Mitchell M. L., Mulherin J. H. How markets process information: News releases and volatility // Journal of Finance. 1994. 49. Pp. 923–950.
- Mitra L., Mitra G. Applications of news analytics in finance: A review // The Handbook of News analytics in finance. 2011. Pp. 1–36.
- Miyakoshi T. ARCH versus information-based variances: Evidence from the Tokyo stock market // Japan and the World Economy. 2002. 14. Pp. 215–231.
- Najand M., Yung K. A GARCH examination of the relationship between volume and variability in futures markets // The Journal of Futures Markets. 1991. 11. Pp. 613–621.
- Rabbi A. M. F. Mass media exposure and its impact on fertility: Current scenario of Bangladesh //Journal of Scientific Research. 2012. Vol. 4. №. 2. Рр. 383–383.
- Ragunathan V., Peker A. Price variability, trading volume and market depth: Evidence from the Australian futures market // Applied Financial Economics. 1997. 7. Pр. 447–454.
- Rubtsov B., Annenskaya N. Factor analysis of the Russian stock market // Journal of Reviews on Global Economics. 2018. Iss. 7 (Special Issue). Pр. 417–425.
- Sanjiv R. News analytics: Framework, techniques, and metrics // The Handbook of News analytics in finance. 2011. Pр. 41-69.
- Tetlock Paul C. Giving Content To Investor Sentiment: The Role Of Media In The Stock Market // The Journal Of Finance. 2007. Vol. Lxii. Pр. 1139–1168.
For citations:
Gavrilov V., Ivanov M.A., Klachkova O.A., Korolev V.Yu., Roshchina Ya.A. (2022). Impact of news flows on components of Russian stock market volatility // Vestnik Instituta Ekonomiki Rossiyskoy akademii nauk № 2. Pp. 93-111. (In Russ.). https://doi.org/10.52180/2073-6487_2022_2_93_111